Rabu, 12 September 2012


Besaran dalam Fisika



Besaran dalam Fisika, Besaran Turunan dan Besaran Pokok
Besaran Turunan adalah besaran yang terbentuk dari satu atau lebih besaran pokok yang ada. Besaran adalah segala sesuatu yang memiliki nilai dan dapat dinyatakan dengan angka.
Misalnya adalah luas yang merupakan hasil turunan satuan panjang dengan satuan meter persegi atau m pangkat 2 (m^2). Luas didapat dari mengalikan panjang dengan panjang.
Berikut ini adalah berbagai contoh besaran turunan sesuai dengan sistem internasional / SI yang diturunkan dari sistem MKS (meter - kilogram - sekon/second) :
- Besaran turunan energi satuannya joule dengan lambang J
- Besaran turunan gaya satuannya newton dengan lambang N
- Besaran turunan daya satuannya watt dengan lambang W
- Besaran turunan tekanan satuannya pascal dengan lambang Pa
- Besaran turunan frekuensi satuannya Hertz dengan lambang Hz
- Besaran turunan muatan listrik satuannya coulomb dengan lambang C
- Besaran turunan beda potensial satuannya volt dengan lambang V
- Besaran turunan hambatan listrik satuannya ohm dengan lambang ohm
- Besaran turunan kapasitas kapasitor satuannya farad dengan lambang F
- Besaran turunan fluks magnet satuannya tesla dengan lambang T
- Besaran turunan induktansi satuannya henry dengan lambang H
- Besaran turunan fluks cahaya satuannya lumen dengan lambang ln
- Besaran turunan kuat penerangan satuannya lux dengan lambang lx


Besaran Pokok, Tambahan dan Turunan Dalam Sistem Internasional / SI - Fisika
Sistem Internasional adalah sistem yang dikembangkan dari sistem besaran metrik yang diresmikan di perancis tahun 1960. Besaran pokok memiliki dimensi sedangkan besaran tambahan tidak memiliki dimensi.
A. Tujuh (7) besaran pokok sesuai Sistim Internasional / SI adalah :
1. Besaran pokok panjang satuannya meter dengan lambang m
2. Besaran pokok suhu satuannya kelvin dengan lambang K
3. Besaran pokok waktu satuannya detik/sekon dengan lambang a
4. Besaran pokok arus listrik panjang satuannya ampere dengan lambang A
5. Besaran pokok massa satuannya kilogram dengan lambang kg
6. Besaran pokok intensitas cahaya satuannya candela/kandela dengan lambang cd
7. Besaran pokok jumlah zat satuannya mole dengan lambang mol

B. Dua (2) besaran tambahan sesuai Sistem Internasional / SI yaitu :
1. Besaran tambahan sudut datar satuan radian dengan lambang rad
2. Besaran tambahan sudut ruang satuan steradian dengan lambang sr
Untuk mencapai suatu tujuan tertentu di dalam fisika, kita biasanya melakukan pengamatan yang disertai dengan pengukuran. Pengamatan suatu gejala secara umum tidaklah lengkap apabila tidak disertai data kuantitatif yang didapat dari hasil pengukuran. Lord Kelvin, seorang ahli fisika berkata, bila kita dapat mengukur yang sedang kita bicarakan dan menyatakannya dengan angka-angka, berarti kita mengetahui apa yang sedang kita bicarakan itu.
Apa yang Anda lakukan sewaktu melakukan pengukuran? Misal Anda mengukur panjang meja belajar dengan menggunakan jengkal, dan mendapatkan bahwa panjang meja adalah 6 jengkal. Jadi, mengukur adalah membandingkan sesuatu yang diukur dengan sesuatu lain yang sejenis yang ditetapkan sebagai satuan. Dalam pengukuran di atas Anda telah mengambil jengkal sebagai satuan panjang.
Sesuatu yang dapat diukur dan dinyatakan dengan angka disebut besaran. Contoh besaran adalah panjang, massa, dan waktu. Besaran pada umumnya memiliki satuan. Panjang memiliki satuan meter, massa memiliki satuan kilogram, dan waktu memiliki satuan sekon. Tetapi nanti akan ada beberapa besaran yang tidak memiliki satuan, misalnya indeks bias cahaya dan massa jenis relatif.
Sebelum adanya standar internasional, hampir tiap negara menetapkan sistem satuannya sendiri. Penggunaan bermacam-macam satuan untuk suatu besaran ini menimbulkan kesukaran. Kesukaran pertama adalah diperlukannya bermacam-macam alat ukur yang sesuai dengan satuan yang digunakan. Kesukaran kedua adalah kerumitan konversi dari satu satuan ke satuan lainnya, misalnya dari jengkal ke kaki. Ini disebabkan tidak adanya keteraturan yang mengatur konversi satuan-satuan tersebut.
Akibat kesukaran yang ditimbulkan oleh penggunaan sistem satuan yang berbeda maka muncul gagasan untuk menggunkan hanya satu jenis satuan saja untuk besaran-besaran dalam ilmu pengetahuan alam dan teknologi. Suatu perjanjian internasional telah menetapkan satuan sistem internasional (Internasional System of Units) disingkat satuan SI. Satuan SI ini diambil dari sistem metrik yang telah digunakan di Perancis.
Besaran Pokok
Satuan
Singkatan
Dimensi
panjang
meter
m
[L]
massa
kilogram
kg
[M]
waktu
sekon
s
[T]
kuat arus listrik
ampere
A
[I]
Suhu
Kelvin
K
teta
jumlah zat
mol
mol
[N]
intensitas cahaya
candela
cd
[J]
Besaran turunan adalah besaran yang diturunkan dari besaran pokok. Dengan demikian satuan besaran turunan diturunkan dari satuan besaran pokok. Sebagai contoh adalah luas, volum, massa jenis, kecepatan, dan percepatan.
Besaran Turunan
Rumus
Dimensi
Satuan dan Singkatan
Luas
panjangXlebar
[L]2
m2
Volum
panjangXlebarXtinggi
[L]3
m3
Massa jenis
massa/volum
[M][L]-3
kgm-3
Kecepatan
perpindahan/waktu
[L][T]-1
ms-1
Percepatan
kecepatan/waktu
[L][T]-2
ms-2
Gaya
massaXperpindahan
[M][L][T]-2
kgms-2 = newton (N)
Usaha dan Energi
gayaXperpindahan
[M][L]2[T]-2
kgm2s-2 = joule (J)
Tekanan
gaya/luas
[M][L]-1[T]-2
kgm-1s-2 = pascal (Pa)
Daya
usaha/waktu
[M][L]2[T]-3
kgm2s-3 = watt (W)
Impuls dan Momentum
gayaXwaktu
[M][L][T]-1
kgms-1 = Ns

Dimensi adalah cara penulisan suatu besaran dengan menggunakan simbol besaran pokok atau bisa dikatak dimensi adalah suatu besaran menunjukkan cara besaran itu tersusun dari besaran-besaran pokok. Apa pun jenis satuan besaran yang digunakan tidak memengaruhi dimensi besaran tersebut, misalnya satuan panjang dapat dinyatakan dalam m, cm, km, atau ft, keempat satuan itu mempunyai dimensi yang sama, yaitu L.
Di dalam mekanika, besaran pokok panjang, massa, dan waktu merupakan besaran yang berdiri bebas satu sama lain, sehingga dapat berperan sebagai dimensi. Dimensi besaran panjang dinyatakan dalam L, besaran massa dalam M, dan besaran waktu dalam T. Persamaan yang dibentuk oleh besaran-besaran pokok tersebut haruslah konsisten secara dimensional, yaitu kedua dimensi pada kedua ruas harus sama. Dimensi suatu besaran yang dinyatakan dengan lambang huruf tertentu, biasanya diberi tanda [ ].
Untuk menentukan dimensi besaran turunan maka kita harus mengetahui dimensi besaran pokok.
No
Besaran
Dimensi
1
Panjang
[L]
2
Massa
[M]
3
Waktu
[T]
4
Suhu
image
5
Kuat Arus
[I]
6
Intensitas cahaya
[J]
7
Jumlah zat
[N]
Langkah-langkah menentukan dimensi suatu besaran turunan adalah:
1. Menuliskan rumus besaran turunan
2. Menuliskan satuan besaran
3. Menentukan satuan besaran
 Contoh: Untuk menentukan satuan dan dimensi dari kecepatan adalah:
langkah 1: Kecepatan adalah perpindahan / waktu
                v = s/t
langkah 2 : v = ms-1
langkah 3 : v = [L][T]-1
Volum sebuah balok adalah hasil kali panjang, leaber dan tingginya (gambar 1). Panjang, lebar, dan tinggi adalah besaran yang identik, yaitu ketiganya memiliki dimensi panjang. Oleh karena itu, dimensi volum adalah panjang3. Jadi, dimensi suatu besaran menunjukkan cara besaran itu tersusun dari besaran-besaran pokok.
Dimensi besaran pokok dinyatakan dengan lambang huruf tertentu (ditulis huruf besar) dan diberi kurung persegi, seperti diperlihatkan pada tabel 3. Dengan alasan praktis, sering dijumpai tanda kurung persegi ini dihilangkan. Dimensi suatu besaran turunan ditentukan oleh rumus besaran turunan tersebut jika dinyatakan dalam besaran-besaran pokok.
Dua besaran atau lebih hanya dapat dijumlahkan atau dikurangkan jika kedua atau semua besaran itu memiliki dimensi yang sama. Sebagai contoh kita tidak dapat menjumlahkan besaran kecepatan dengan besaran percepatan. Jadi, A + B = C hanya dapat kita jumlah jika ketiganya memilii dimensi yang sama.
Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A = 2.phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi ingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.
Jika dapat menentukan bagaimana suatu besaran bergantung pada besaran-besaran lainnya, maka anda dapat menggunakan metode analisis dimensional untuk menentukan suatu persamaan yang menghubungkan besaran-besaran tersebut. Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut kita wakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.